Section 2.7: Graphing Techniques

Video 1

A graph is symmetric about the \boldsymbol{y}-axis if the graph to the left of the y-axis is a mirror image of the graph to the right of the y-axis.
If you replace x with $-x$ in the equation, you get an equivalent equation.
A graph is symmetric about the \boldsymbol{x}-axis if the graph below the x-axis is a mirror image of the graph above the y-axis.
If you replace y with $-y$ in the equation, you get an equivalent equation.
A graph is symmetric with respect to the origin if the replacement of x with $-x$ and y with $-y$ at the same time produces an equivalent equation.

1) Test for symmetry with respect to each axis.
a) $y=x^{2}-3$
b) $x=|y|+5$
c) $y=3 x-10$
d) $x^{2}+y^{2}=4$
2) Determine whether the graph of the equation is symmetric with respect to the origin.
a) $y=4 x^{2}$
b) $y=2 x^{3}$
c) $y=x^{3}-7 x$
d) $x^{2}+y^{2}=81$

Video 2

A function f is an even function if $f(-x)=f(x)$ for all x in the domain of the function.
A function f is an odd function if $f(-x)=-f(x)$ for all x in the domain of the function.
3) Determine whether the function is even, odd, or neither.
a) $f(x)=x^{2}+8$
b) $f(x)=x^{5}-7 x^{3}+11 x$
c) $f(x)=x^{2}+6 x+10$

Video 3

For $a>0$, the graph of $y=a \cdot f(x)$ applies a vertical stretch or shrink to the graph of $y=f(x)$.
4) On the same set of axes, graph $f(x)=x^{2}$ and $f(x)=2 x^{2}$.

x	x^{2}	$2 x^{2}$
-2		
-1		
0		
1		
2		

5) On the same set of axes, graph $f(x)=|x|$ and $f(x)=\frac{1}{2}|x|$.

x	$\|X\|$	$1 / 2\|x\|$
-2		
-1		
0		
1		
2		

Video 4

For $a>0$, the graph of $y=f(a \cdot x)$ applies a horizontal stretch or shrink to the graph of $y=f(x)$.
6) On the same set of axes, graph $f(x)=x^{2}$ and $f(x)=\left(\frac{1}{3} x\right)^{2}$.

7) On the same set of axes, graph $f(x)=|x|$ and $f(x)=|2 x|$.

Video 5

The graph of $y=-f(x)$ is the same as the graph of $y=f(x)$, reflected across the x-axis.
The graph of $y=f(-x)$ is the same as the graph of $y=f(x)$, reflected across the y-axis.
8) Use the graph of $f(x)=\sqrt{x}$ to graph $f(x)=-\sqrt{x}$ and $f(x)=\sqrt{-x}$.

Video 6

The graph of $y=f(x)+k$ applies a vertical shift of k units to the graph of $y=f(x)$.
9) On the same set of axes, graph $f(x)=x^{2}$ and $f(x)=x^{2}+5$.

10) On the same set of axes, graph $f(x)=\sqrt{x}$ and $f(x)=\sqrt{x}-3$.

Video 7

The graph of $y=f(x-h)$ applies a horizontal shift of h units to the graph of $y=f(x)$.
11) On the same set of axes, graph $f(x)=|x|$ and $f(x)=|x+3|$.

12) On the same set of axes, graph $f(x)=x^{3}$ and $f(x)=(x-2)^{3}$.

Video 8
13) Graph $f(x)=2|x-4|-3$.

14) Graph $f(x)=-\sqrt{x+2}+5$.

15) Graph $f(x)=-\frac{1}{2}(x-4)^{2}+6$.

